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CALIBRATED L-BAND TERRAIN MEASUREMENTS
AND ANALYSIS PROGRAM - RESULTS

1
INTRODUCTION

This report presents the results obtained during the final year of
the Calibrated L-band Terrain Measurements and Analysis Program con-
ducted by the Environmental Research Institute of Michigan (ERIM) for
the Electronics System Division of the U.S. Air Force Systems Command.
The overall goal of this program was to provide L-band radar clutter
data from a variety of terrain types and sea states and to begin to
evaluate models which describe the radar clutter. The approach adop-
ted for this program was to utilize airborne synthetic aperture radar
(SAR) (Rawson, et a., 1975) imagery as a source for the L-band clutter
data. The SAR imagery used during this program was provided courtesy
of several different U.S. Government sponsors. The primary data sets
were collected over central North Carolina during a U.S. Geological
Survey Radar data collection (Kasischke, 1985; Kover and Jones, 1985)
and over Long Island, New York during the ONR- sponsored SARSEX ex-
periment (Kasischke, et al., 1985). Additional SAR data was collected
over the Marginal Ice Zone during the ONR- sponsored MIZEX '84 experi-
ment (MIZEX Group, 1986).

““,A_vﬁ__*g_v,"ﬁ-u
»

This program was conducted in two phases. During Phase I, four
{ distinct tasks were performed: (1) collection of SAR data and asso-
| ciated ground truth information; (2) processing and calibratfon of SAR
i data of selected test areas; (3) reduction of ground-truth data; and
‘ (4) selection of radar surface scattering models. The Phase I activ-
f ities are summarized by Larson, et al. (1986). During Phase II, the
| following tasks were performed: (1) extraction of calibrated L-band
\ radar cross section measurements from the SAR data; (2) evaluation and
\ modeling of the image intensity distributions observed on SAR imagery;
and (3) comparison of the radar scattering coefficients obtained in
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Phase 1 to the ground-truth data via deterministic models and statis-
tical analyses. The procedures used to analyze the SAR imagery, along
with the results of these analyses are presented in this report.

Including this introduction, this report includes five chapters.
Chapter 2 presents a summary of the radar scattering coefficients
extracted during this program. In  addition to the L-band SAR data, a
limited amount of X-band and C-band radar scattering coefficient mea-
surements were made available to this program. These measurements are
summarized in this chapter. Chapter 3 of this report discusses the
modeling of the intensity distributions observed on SAR data. Chapter
4 presents the results of the comparison of the SAR radar cross sec-
tions to the ground-truth data. Finally, Chapter 5 discusses the
conclusions and recommendations from this program.
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2
L-BAND RADAR SCATTERING COEFFICIENTS

In this chapter, the radar scattering coefficient (¢©) measure-
ments derived from the various SAR data sets are presented. Calibra-
tion of the SAR system is described in the interim report (Larson, et
al 1986). Because the size of the individual test sites within the
several different data sets varfed considerably, different data ex-
traction and display techniques were employed. These techniques will
be discussed in the different sections of this chapter.

In this chapter, we will present ¢° measurements from four dif-
ferent test areas:

1 Long Island, New York (SARSEX)

2. Duke Forest, North Carolina (USGS)
3. Atlantic Ocean (SARSEX), and

4, Fram Strait, Greenland Sea (MIZEX).

2.1 LONG ISLAND, NEW YORK TEST SITES

The Long Island, New York test sites were imaged during a number
of different passes during the SARSEX experiment. The test sites used
for this study were located 1in and around the Peconic River Airport,
which is owned and operated by Grumman Aerospace Corporation. For
this analysis, we will present data collected during six different SAR
passes on two separate dates at different incidence angles and polari-
zations. Specifically, we will present data from four passes where
HH-polarization data were collected and data from two passes where VV-
polarization data were collected. Figures 1 and 2 present examples of
the L-band HH- and VV-polarized SAR 1imagery collected over the Long
Island test sites.

Radar scattering coefficient (0©) measurements were extracted from -
22 different test sites. These test sites are summarized in Table 1
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Figure 1.
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L-band (HH) SAR Imagery of the Long Island Test
Sites Collected During SARSEX-10, Pass 1, 7
October 1984

N 'sv.* Vs"{\ <

'r "‘\"
l;\'

'.“.-. Ox :".' pira NG MR

LANMM a' t‘ ' u'. l‘ |’, l' ‘e

-’

RS ANIAL LALLM

%

'

L)

22

)I

s

&

1R A " SRS IION

"A

£y




- -

i RO X

TR e, ;
‘ ¢

¢
LA . E ¢

Ll L L

L

o)

o

S

Figure 2. L-band (VV) SAR Imagery of the Long Island Test o
fites Collected During SARSEX-10, Pass 3, 7 x
October 1984 M
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TABLE 1
LONG ISLAND TEST SITES

Site Designation ‘ Site Description

Strawberry Field

Orchard

Smooth, Bare Field

Smooth Field - Near South Rd.
Potatoes - South Side
Potatoes

Potatoes

Potatoes

Potatoes

Grass

Corn Stalks

Grass

Cabbage

Grass Field (VOR, Reflectors)
RF1 Grass Field

RF2 Grass Field

RF3 Grass Field,

Short Pike, Trees - Weeds
Smooth, Bare Field

Smooth, Bare Field

Smooth, Bare Field

Smooth, Bare Field

Sod

Sod

Sod

Bare, Smooth Field, N-S Furrows
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and their locations presented in Figure 3. Figure 4 presents selected
surface photographs 1l1lustrating the different types of ground cover
present at the Long Island test sites. (Other photographs included in
Larson, et al 1986).

The 0° measurements were generated by averaging a 40 by 40 pixel
subset from the individual test sites. The ERIM SAR image processor
generates pixels with a dimension of 1.5 by 1.44 m. The 3 m resolu-
tion of the SAR data is therefore oversampled by a factor of 2 in both
the range and azimuth dimensions. In order to estimate the number of
independent looks, N, for the o0 measurements, we must divide the
number of pixels averaged by 2 in both the range and azimuth di-
mensions (Kasischke, et al., 1987). Each ¢© value thus was generated
using 400 independent samples (20 by 20 pixels), resulting fn a 90%
confidence interval due to specklie or fading of + 0.35 dB, assuming
that radar speckle has a chi-square distribution (Ulaby, et al.,
1982).

Another source of uncertainty in the ¢° measurements is the within
field variation present in the data. To measure this uncertainty, six
different o° measurements were obtained from three of the test sites
(F, 6 and H) at four separate incidence angles using the L-band (HH)
data sets. These measurements are summarized in Table 2. The maximum
standard deviation obtained was 0.5 dB. We can define a standard
error of the mean (SE) as

SE = SD/N1/2 (1)

where SD is the standard deviation and N 1is the number of samples
averaged. Doing so results in a maximum standard error of + 0.3 dB.
Combining the uncertainty due to radar fading, with the maximum uncer-
tainty due to the within field variability results in a maximum + 0.5
dB error bound for the o° measurements. In Figure 5, we plot
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Location of Test Sites Around the Peconic River Airport

Long Island

Figure 3.
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Field RFS-3 - Reflector Site Area
Field X - Tall Grass Field

surface Photographs of Selected Long Island Test Sites
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Figure 5. Plot of Average L-band (HH) o © Values for Three
Test Sites
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the 00 measurements presented in Table 2. We can see that for all 3 .
test sites, there is a clear decrease in 00 as incidence angle in-

creases. In these examples, the 9 values for the standing corn

stalks are clearly 5 dB8 higher than the other two test sites, whose

a9 values are essentially equivalent.

The ¢9 values for the 14 test sites are summarized in Figure 6.
From these graphs, we can note the following trends. In general, for
L-band (HH) radar data, as 1ncidence angle increases, ¢9 decreases.
This trend was observed for all data sets. The trend for the L-band
(VV) data was not as clear, with o0 both increasing and decreasing as
incidence angle increases.

Figure 7 presents a composite plot of the various fields compared
to one another. In this plot, we combined all similar test sites to
obtain an average g9 signature for a particular terrain type. In this
plot, we compare only the L-band (HH) data sets. The highest ¢© val-
ues were obtained for the orchard and corn stalks, while the lowest
were obtained for the sod and potato fields. There is clearly a 10dB
difference for the and brightest fields at all incidence angles.

2.2 DUKE FOREST TEST SITES

In early April 1984, during a data collection program conducted
for the U.S. Geological Survey (Kover and Jones, 1985), multifre-
quency, multipolarization SAR data were collected over the Duke Forest
using the ERIM/CCRS CV-580 SAR System (see Figures 8 and 9). 1In this
study we utilize L-band (VV) data collected on 8 April 1984 and X and
C-band (VV) data collected on 10 April 1984. The deciduous trees in
the study area were at a stage where most of the buds had burst, but
no significant leaf flushing or new stem growth had occurred. The
weather conditions were identical on each day of the SAR data
collection, with overcast skies and periods of light rain.
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Site J — Cabbage Field

0 —8— HH Polarization

—»— VWV Polarization
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Figure 6. Plots of L-band (HH and VV) €@° values for the
- Long Island Test Sites [Figures (a) through (n)]

(a). Cabbage Field (Site J)
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Figure 6 (b). corn Stalks (Site G)
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Site H = Cut Corn
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Figure 6 (c). Cut Corn (Site H)
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Site B Orchard
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Figure 6 (d). Orchard (Site B)
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Site M — Sod Field
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Figure 6 (e). Sod Field (Site M)
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Site R — Sod Field
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Figure 6 (f). Sod Field (Site R)
18
%A %& \:— Pq,"i' |“'ip‘l‘a ".‘&;1!‘ ” . (A X5 1, ‘0"“. |'. ’g g“ . .\. W \‘ i::
) ' 1 .
B Fotny ‘:« ‘f ‘:".:u? X A ‘.t".l "‘ us".':':'g‘o t.”t.l‘. .\0 |. ﬁ".o. GO0 "t."-"'n"‘ o.' W, l"h"\ Mh,




Site W — Sod Field
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Figure 6 (g). Sod Field (Site W)
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Site Q — Sod
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Figure 6 (h). Sod (Site Q)
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Site F = Grass Field
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Figure 6 (i). Grass Field (Site F)
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Site | = Grass Field
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Figure 6 (j). Grass Field (Site I)
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Site K = Grass Field
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Figure 6 (k). Grass Field (Site K)
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Site 8 — Potatoes
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Site 3 — Potatoes
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Figure 6 (m). Potatoes (Site 3)
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Site 3 = Potato Field
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Figure 6 (n). Potato Field (Site 3)
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Figure 7. Composite Plots of L-band (HH) o © Values for
Similar Fields
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The tree stands in the Duke Forest range 1in size from 1 to ) 50
hectares, and have been in a “forest condition" for more than 50
years. What makes this a particularly valuable test area for the
evaluation of SAR imagery for forestry studies is that research rec-
ords for the stands within the forest are extensive (Edeburn, 1981),
with historical information on tree growth, stand age, stand density,
stand mortality, etc., in existence for hundreds of permanent plots
throughout the forest. In addition, the Duke Forest is the site of
numerous ongoing and proposed forestry and ecological studies (see,
e.g., Christensen and Peet, 1984).

For the present analysis, a 2.9 by 6.1 km area surrounding the
Blackwood Division of the Duke Forest was utilized as the primary test
area, Figure 10 1s a mosaic of 1:9600 scale black and white aerial
chotographs which contains the Blackwood Division. The aerial photo-
graphy was collected fn January, 1985, nine months after the SAR data
collection. Figure 11 presents a vegetation map of the Blackwood
Division of the Duke Forest which was generated using a combination of
existing forest cover maps (Edeburn, 1981), ground truth collected at
the time of the SAR overflights, and the aerial photography presented
in Figure 10. A point of reference for all the images and maps pre-
sented in this paper is the large grass field (site B9) located in the
center of a recent clearcut area of the Blackwood Division.

A secondary test area outside of the Blackwood Division, which
contained a forest stand located along a stream which was flooded
during the SAR overflights, was also used in this study. An enlarge-
ment of the SAR imagery from this secondary test area is presented in
Figure 12.

Twenty-two test sites were 1identified within the two test areas
(see Table 3 and Figure 10). These test sites can be divided into the
following basic categories:

Young Pine (Figure 13a): A three year old stand of lobloily pine
(P.taeda), 1.2 m in height (site 88{.
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BLACKWOOD DIVISION

Figure 11. Forest Cover Map of Blackwood Division Test Site
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L-Band
Figure 12. Digitally-Processed X-, C- and L-band SAR Data
(VV polarization) Collected over a Flooded
Forest Stand North of the Blackwood Division of
the Duke Forest
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. TABLE 3
DUKE FOREST TEST SITES

CONFIGEROUS SPECIES DECIDOUS SPECIES
BASAL
TREE STEMS/ DBH AREA HEIGHT STEMS/ DBH BASAL HEIGHT

SITE TYPE AGE ha (cm) (sq m/ha) (m) ha (cm) AREA ~(m)
B1 D v 7 36 1 21 640 17 27 22
B2 SO U 99 30 8 26 388 19 18

B3 c U 121 37 18 27
B4 S 60 121 34 11 31 1247 11 18

BS A0 U 10 54 2 31 472 19 22

86 LE U 106 36 12 25 810 19 22

B7 o ] 10 41 1 27 699 18 30

B8 L 3 8 1

B9 G -

B10 L 50 247 35 32 26 378 15 9

B11 c U 10 41 1 24 566 28 27 24
B12 D ] 104 27 7 23 299 31 30 24
B13 D U 20
B14 L 60 170 39 21 30 729 16 24

B15 L 40 454 31 37 27 17 41 3

B16 L 40 437 28 28 24 284 10 3

818 L 30 410 22 18 20

B19 L 30 963 24 46

820 L 30 531 25 28 22 79 21 5

B21 E u 442 22 27 28
B22 L 40 358 31 28 27

B23 L 30 390 25 21 22 72 20 3
B24 SSF U

B25 SSD ]

TREE TYPE KEY
A0 - SWEETGUM/YELLOW POPLAR

C - WHITE OAK/RED OAK/BLCK OAK
D - BLACKJACK OAK/POST OAK
E - MIXED HARDWOOD
L - LOBLOLLY PINE !
LE -~ LOBLOLLY PINE/MIXED HARDWOOD .
S - SHORTLEAF PINE ' y
SO - SHORTLEAF PINE/OAK
SSD - SYCAMORE/SWEETGUN/LOBLOLLY-DRY SITE

y SSF - SYCAMORE/SWEETGUM/LOBLOLLY-FLOODED SITE
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(g) Grass Field (Site B9)
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Mature Pine (Figure 13b): Thirty to forty year old loblolly pine
stands, with virtually no other tree species in the overstory or
understory (site B23).

01d Pine (Figure 13c): 50 to 60 year old stands of loblolly pine
and shortleaf pine (P. echinata), where mortality in the overstory
has allowed the invasion of deciduous species (site B14).

Mixed Pine/Hardwood (Figure 13d): Stands where both pine and
hardwoods are dominant overstory species (site B6).

Hardwood Stands (Figure 13e): Stands where hardwood species domi-

nate the overstory. On drier sites, pure and mixed stands of oak

prevail (Q. alba, Q. rubra, Q. velutina, Q. marilandica, Q. prinus

and Q. stellata), while on moister sites, yellow poplar (L. tulip-
zfira)B;?d sweetgum (L. styraciflua) are the dominant species
site .

Flooded Stand (Figure 13f): Spring rains resulted in one stand of
sycamore (P. occidentalis) and sweetgum being flooded at the time
of the SAR data collection. Although the picture of this area in
Figure 13f was collected at a time when the site was not in a
flooded state, the water marks on the tree trunks clearly indicate
tha§ this stand is flooded at some stage during the year (site
B24).

Grass Fleld (Figure 13g): This test site containing short (5 cm

in height) grass was included as a reference for the other test

sites ?site B89). .

The research records from the Duke Forest were reviewed, and a set
of tree parameters obtained for each test site. These parameters
include:

Age: The average age (usually rounded to the nearest ten years)
of the trees within the stand.

items/hectare: The average number of trees per hectare greater
than 10 cm in diameter within the stand.

Diameter at breast height (DBH): The average diameter of all
trees within the stand measured at a height of 1.3 m above the
ground level.

Basal area: The total area (in m2) of all tree trunks (at 1.3 m
above the ground) within the forest stand.

Height (m): The average height of the trees within the stand.

38

. . N
N N NS DSOS OB NN LA NG ) OO0 OB ! ) Vi " OO NN A
Pttt ettt iyt sty cl'.ﬂ.:.',.p',. AONGAACAL N it ety ...c'.‘o:q:.‘ R
1} “‘.1"0‘0 LMK “’?.th“?"“ .“‘.l'i."l I'""‘ ‘i‘.‘!i vy W, Wy |D( .i".l' ‘..i." ..‘I.' A ' ) OGN, ‘)‘.‘a t;"“‘:ﬂ a'l‘o‘. h ‘l.l
I ST R IR S RO R SO SOOI O OO e S G Pt e B e SR,y




These parameters are summarized for the 22 test sites in Table 3.
Note that the data presented in Table 3 has been divided into two
groups (coniferous and deciduous species) for each test site.

Estimates of the radar scattering coefficient (¢°) were generated
for the 22 test sites using the average value from a 40 by 40 pixel
. subset extracted from the calibrated SAR images.

Table 4 summarizes the g0 values for the 22 test sites. The inci-
dence angle (84) for the test sites 1{s 579, except for sites B24 and
B25, where it is 469. In Table 4 the test sites have been grouped by
tree type and age. For analysis purposes, the 22 test sites were
organized into 13 categories. The average ¢©0 values for these 13
categories are summarized in Table 5 and presented in Figure 14. The
upper and lower error bounds are also presented in Figures l14a-14c.
We define the upper bound (UB) being equal to the lower bound (LB) as

UB = LB = [r2 + s¢2 + SE2]1/2 (2)

where r is the relative calibration of the SAR (1 dB), s¢ is the var-
fability due to speckle (.35 dB) and SE is the standard error of the
mean defined in Eq. (1). Figure 14d presents the average ¢g° values
for all three radar frequencies plotted on the same graph for compari-
son purposes. s

From Tables 4 and 5 and Figure 14, we can make several observa-
tions. We first note that while there is a significant difference
between the dry and flooded sycamore stands in the L-band (3.5 dB) and
C-band (3.0 dB) imagery, there 1{s considerably less difference in the
X-band data (0.9 dB). The observation at L-band is consistent with ‘
studies conducted with satellite SARs (Krohn, et al., 1983; Ormsby, et
al., 1985; Lyon and McCarthy, 1981). At C-band, no previous SAR data
exists where flooded forests had been imaged. However, previous air-
craft X-band SLAR imagery collected over a flooded forest canopy
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TABLE 4
RADAR SCATTERING COEFFICIENTS FOR DUKE FOREST TEST SITES
SCATTERING COEFFICIENTS
TREE
SITE TYPE AGE X-BAND C-BAND L-BAND
B9 G - -5.14 -5.50 -16.34
B8 L 3 -1.33 -3.30 -13.39
B19 L 30 -3.11 -3.97 -10.98
B20 L 30 -1.75 -5.17 -11.61
B23 L 30 -1.26 - .41 -11.58 :
B15 L 40 -2.88 -3.51 -12.12 .
B16 L 40 -3.00 -3.58 -10.80
B22 L 40 -4.43 -3.05 -11.02
B10 L 50 -4.43 -3.05 -11.02
B4 S 60 -2.22 -4.51 -13.05 ]
B14 L 60 -1.84 -4.76 -11.58 X
B2 S0 v - .64 -3.26 -11.36 -
B6 LE v - .74 -3.67 -11.29 A
B1 D U - .01 -2.73 -11.03 :
B12 D v -3.13 -3.47 -11.21 -
B13 0 U - .73 -3.23 -11.67 -
B3 c v - .64 -3.60 -11.41 0
B7 c u - .18 -2.56 -10.62 y
B11 c u -3.15 -3.55 -10.97 N
B5 AO v -1.30 -2.77 -11.28 :
B21 E u - .47 -4.06 -11.60 .
B24 SSF u - .95 -1.47 - 8.12 3
B25 SSD -1.78 -5.14 -11.62 5
TREE TYPE KEY i
AO - SWEETGUM/YELLOW POPLAR N
C - WHITE OAK/RED OAK/BLCK OAK )
D - BLACKJACK OAK/POST OAK .
E - MIXED HARDWOOD :
L - LOBLOLLY PINE -
LE - LOBLOLLY PINE/MIXED HARDWOOD .
S - SHORTLEAF PINE i
SO - SHORTLEAF PINE/OAK 3
SSD - SYCAMORE/SWEETGUN/LOBLOLLY-DRY SITE "
SSF - SYCAMORE/SWEETGUM/LOBLOLLY-FLOODED SITE &
40
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TABLE 5
MEANS AND STANDARD DEVIATIONS OF DUKE FOREST
RADAR CROSS SECTION VALUES

SITE N X-BAND  C-BAND  L-BAND
GRASS FIELD 1 -9.11  -0.47  -16.34
3 YR PINE 1 -5.31  -7.28  -13.39
30 YR PINE 3 MEAN -6.07  -7.21  -11.39
S0 .95 2.60 .29
40 YR PINE 3 MEAN -6.62  -8.10  -11.67
S0 .66 .88 .62
50 YR PINE 1 -8.36  -6.98  -11.02
60 YR PINE 2 MEAN -6.19  -8.79  -12.31
sD .23 .22 .73
| HARDWOOD/PINE MIX 3 MEAN -4.87  -7.55  -11.32
| SO .06 .28 .03
| CHESTNUT OAK 3 MEAN -5.37  -7.22  -11.30
| SD 1.30 .22 .27
MIXED OAK 3 MEAN -5.35  -7.22  -11.00
| sD 1.29 52 .32
\
| YELLOW POPLAR/SWEETGUM 1 -5.39  -6.86  -11.29
MIXED HARDWOODS 1 -4.68  -8.26  -11.60
DRY SYCAMORE 1 -6.37  -9.72  -11.62
FLOODED SYCAMORE 1 -5.60  -6.12 - 8.12
41
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(Ormsby, et al., 1985) revealed no significant difference from adja-
cent unflooded canopies.

The second observation we can make from the SAR forestry data
concerns the ranges of radar scattering coefficients observed over
different forest stands. In this analysis, we consider only those
sites from the same incidence angle range with full canopies (i.e.,
all sites in Table 4 except B8, B9, B24, B25). If we consider the
average values presented in Table 5, the range of observed ¢%'s at X-
band is 3.4 dB, at C-band, 2.3 dB, and L-band, 1.3 dB. If we con-
sider all the values, as presented in Table 4, then the range of scat-
tering coefficients for mature, dry forests is 4.2 dB at X-band,

4.8 dB at C-band and 2.8 dB at L-band. Thus, the highest range of
radar responses for forest canopies occurs at the higher radar fre-
quencies (X and C-band).

2.3 ATLANTIC OCEAN TEST SITES

A considerable amount of calibrated L-band (HH) SAR imagery was
collected over open ocean regions during the 1984 SARSEX experiment.
In this section, we will present L-band scattering coefficients from
three passes collected during this mission.

Computer programs have been developed to extract caiibrated radar '
scattering cross-section (o) or scattering coefficient ¢0) measure- h
ments from airborne SAR imagery. The SAR calibration algorithm devel- X
oped by Larson, et al. (1987) has been coupled with an algorithm which _
allows for scanning along any track in any direction within the SAR
scene. This computer program allows for the operator to select:

(1) scan direction, (2) number of pixels for averaging in the cross-

track direction, and (3) number of pixels for averaging in the along-

track direction. The algorithm outputs a plot with either slant or

ground range as the X-axis and relative or absolute ¢ or ¢9 as the Y-

axis.
g
.
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The tracks of the surface vessels collecting the ocean measure-
ments during SARSEX were always oriented perpendicular to the propaga-
tion direction of the internal waves. Thus, the scans extracted from
the SAR images were oriented so they were parallel to the ship's
track, with the center of the scan coincident with the ship's position
in the SAR image. To generate these scans, a window of 150 m in the
cross-track direction and 22 m in the along-track direction was used.
The number of pixels or independent samples used to generate each ¢°©
measurement leads to a maximum + 0.55 dB uncertainty (90% confidence
interval) in the resultant ¢° value due to image speckle or fading
(Viaby, et al., 1982).

The data used in this analysis was collected during three separate
passes: SARSEX-4, Pass 5; SARSEX-5, Pas: 9; and SARSEX-8, Pass 4.
Figure 15 presents the g0 scans for these three passes. The incidence
angle ranges for these data sets was from 250 to 56°. We can see that
the overall g0 level for the three passes was fairly constant with
respect to wind speed, but there is a noticeable fall- off in 4© as
incidence angle decreases. This fall-off is approximately 0.25 dB per
degree in incidence angle. The observed fall-off matches model pre-
dicted values quite well (Lyzenga and Bennett, 1987; Kasischke, et
al., 1987).

2.4 FRAM STRAIT ICE TEST SITES

L-band (HH) radar scattering coefficient (0°) values were extract-
ed from airborne SAR imagery collected during the MIZEX experiment.
In order to calibrate this data set, the L-band SAR image intensities
were compared to helicopter-borne scatterometer measurements collected
near-coincidently with the SAR data (Onstott and Larson, 1986).

Table 6 summarizes the L-band (HH) o¢© values. (Burns, 1987) All
data were collected at an incidence angle of 350, Note that in this
case, the ¢° value from the open water test site is -32.5 dB,
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SUMMARY OF RADAR SCX??EEISG COEEFICIENT (00)
VALUES FOR THE FRAM STRAIT TEST SITE

TEST SITE O VALUE (dB)
Open Water -32.5
Brash Ice -21.5
Thin First Year Ice -25.0
Medium First Year Ice -25.0
Heavy Snow Cover -27.5
Pressure Ridge -25.5

. Multiyear Ice with Snow -26.0
Multiyear Ice with Melt Pools -22.5
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approximately 15-20 dB lTower than the values observed over the SARSEX
test areas. Surface observations of the open water areas in the MIZEX
scenes showed that the water surface was extremely calm, with no sur-
face capillary waves present. The data in Table 6 clearly illustrate
the wide range of 09 values present in data collected over Arctic
regions.
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3
DENSITY DISTRIBUTIONS ON SAR DATA

The distribution of the recorded intensities on synthetic aperture
radar (SAR) imagery is the result of radar fading (resulting in SAR
image speckle) and the distribution of the scatterers within the area
imaged by the SAR. The radar fading dominates the spatial patterns
present on an image unless steps are taken to reduce its influence.
Two techniques are commonly used to reduce SAR image speckle. Non-
coherent integration or multiple-looking 1s achieved by processing
separate portions of the SAR bandwidth independently, and then averag-
ing these separate sub-images to form the desired output image
(Porcello, et al., 1976). The second technique simply involves aver-
aging a number of pixels together after the SAR image has been formed.
Both of these methods reduce the speckle or fading in a SAR image at
the expense of spatial resolution. These methods also reduce the
amount of textural information available from the SAR data.

To better understand the characteristics of the intensity distri-
butions on SAR data collected .over distributed targets, an analysis
was performed where the observed intensity distributions from airborne
SAR imagery were compared to those predicted by three mathematical
functions. The functions evaluated were: the Gamma distribution, the
Inverse Gaussian distribution, and the Log Normal distribution.

The SAR data from each test site was first digitally processed
into imagery, and corrected for antenna gain and range fall-off varia-
tions. No multiple-looking was performed during the processing of the
SAR data.

An 80 by 80 pixel subset was extracted from each test site listed
in Table 7 for each SAR channel. Every other pixel was discarded from
this initial sample so that each pixel was independent from its
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TABLE 7
SAR IMAGE INTENSITY DISTRIBUTION STUDY TEST SITES

SAR TEST
MISSION SITE DESCRIPTION
U.S.G.S Gl Grass Field
G2 3 Year 01d Pine
G3 30 Year 01d Pine
G4 50 year 0ld Pine
G5 Mixed Oaks
G6 Sweetgum/Yellow Popular
SARSEX S1 Sea Surface, 7 kt wind
S2 Sea Surface, 16 kt wind
S3 Grass Field
S4 Potato Field
S5 Unharvested Corn Field
S6 Harvested Corn Field
S7 Mixed Deciduous Forest
MIZEX M1 First Year Ice
M2 Second Year Ice
|
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neighbors. From these original samples, eight additional data sets
were generated by spatially averaging between 2 and 9 adjacent pixels.
Thus, for each original 80 by 80 pixel data set, we now have nine
subsets, with the number of independent samples, N, equal to 1, 2, 3,
4, 5,6, 7, 8, and 9.

3.1 SAR IMAGE INTENSITY MODELS

The Gamma distribution can be formulated as
f(x) = [(x/b)c-1 e-x/b)/[br(c)] (3)

where x is a given value within the population, I'(c) is the Gamma dis-
tribution evaluated at ¢, and b and ¢ are defined as

b = s2/X (8)
c = X2/s2 (5)

where X is the mean value for all x's 1{n the sample and s is their
standard deviation. The Gamma distribution {s used to model radar h
fading for power measurements where no background variation is pre-
sent. In this case, ¢ = N, where N is the number of independent sam-
ples averaged to form the radar data set.

The Inverse Gaussian distribution can be formulated as F
(x) = {(\/[2m(x-a)3]1}1/2 - exp{- [x-o-u]2/[2u2(x-0)]}, (6)
where '
= X1 - (x - x1)3/(2s2 10g n), (7)
f
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X1 is the minimum value of x in the sample,

u=7%-a, (8)

and
A= [(1/n) E (x1 -a)-1 - (1/u)]-1. (9)

Eqs. (7-9) use the sample data set to generate the necessary param-
eters for the Inverse Gaussian distributfon in Eq. (6).

The Log Normal distribution can be formulated as

f(x) = {1/[(x-a)e sqrt(2r)]}exp{-0.5[1n((x-a)/m)]/a)2}, (10)

where
o = standard deviation (In x), (11)

m=eY, (12)
with

U = mean (In x). ' (13)

Again, Eqs. (11-13) use the data set to generate the necessary param-
eters for the Log Normal Distribution described by Eq. (10).

The parameters defined by Eqs. (4,5,7-9,11-13) are maximum likeli-
hood estimates described by Cheng and Amin (1981) and Folks and
Chhikara (1978).

In order to determine whether or not a derived Gamma, Inverse
Gaussfan or Log Normal Distribution matched the sample population, a
non-parametric statistical test was applied. The type selected for
this analysis was the Kolmogorov test described by Conover (1981).
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This test operates by comparing the maximum vertical separation be-
tween the sample distribution and a candidate distribution [e.g., in
our case, Eqs. (2,5,9)] with a Kolmogorov test statistic (K). The
Kolmogorov test statistic 1is based on the number of points in the i
sample population (N) and the level of significance. For a 95% level
of significance, this statistic is

K = 1.36/N1/2 (14)

This test statistic is used by comparing the cumulative distribu-
tion functions of the candidate and sample distributions. Figure 16
presents a plot of the CDF for test site S3, along with the Inverse
Gaussfan and Log Normal distribution fits for this data set.
Figure 17 presents plots of the differences between the actual data
and these two distributions. The K-parameter for this example is
+ 0.04. Thus, we can see that both the Inverse Gaussian and Log
Normal distributions adequately model the observed intensity
distributions for this test site.

; Cumulative distribution functions for all three speckle models

j were generated for all test sites for sample numbers N = 1 to 9 using

' the maximum 1ikelihood estimates. The predicted COFs were then com-
pared to the CDFs from the actual SAR data.

Surprisingly, in all cases, all three speckle models generated
distributions which matched the SAR data using the Kolmogorov goodness ’
of fit test. Overall, the best fit was achieved using the Gamma dis-
tribution. In the next section, we will discuss how the relationship
between N and the c-parameter generated using Eq. (5) can be used to
estimate the texture within the SAR scene.

St b 5 SR

3.2 TEXTURE MODEL

The variability in the intensities recorded on a SAR image is due
to two factors: (1) radar fading or speckle; and (2) the natural
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GRASS 1 HISTOGRAM WITH™ -
INVERSE GARUSSIAN AND LOGNORMAL FITS
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Figure 16. Cumulative Distribution Function (CDF) for Test
Site S-3 with Inverse Gaussian and Log Normal
Fits
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- Figure 17. Kolmogoroff Difference Plots for Test Site S3

(Figures (a) and (b)]
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. variability or spatial distribution of the scatterers within the scene
resulting in the radar backscatter. The distribution of the SAR image
intensity can be accounted for by using a multiplicative model which
takes into account both radar fading and the texture present in the
data. This variability can be modeled after Ulaby, et al. (1986) as

Pij = Py T1(J) Fn(J) (15)

where

Pij 1is the }ma?e intensity of the jth pixel in the ith
ield,

Py is the mean image intensity of the ith field,

T{(j) is the texture random variable accounting for the
natural variability in the ith field, and

Fn(J) is the speckle variable accounting for signal fading
(this fading is characterized using a I'Z distribution
with 2N degrees of freedom).

The texture random variable, Ti(j), 1in Eq. (15) is dependent on
the scattering characteristics of the surface resulting in the radar
backscatter, and thus should be considered along with the measured
power intensity, Pij, when developing radar scattering models.’

Figure 18 presents a scatter plot of the Gamma distribution c-
parameter versus the number of independent samples, N, for the 3 year
loblolly pine field (test site G3) for each radar frequency. Also
presented in Figure 18 are the least-squares regression lines [12]
which best fit the data. Clearly, a strong linear relationship exists
between the c-parameter and N.

The variability within an image due to the texture (s¢) of the
target resulting 1in the radar backscatter can be expressed after
Ulaby, et al. (1986) as
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st2 = [(s/X)2 - 1/N)/[1 + (1/N)]. (16)

Combining Eqs. (16) and (5) results in
st = [(1/¢) - (1/N)1/[1 + (1/N)]. (17)

Note that in order for Eq. (17) to be valid, ¢ always has to be
less than or equal to N. Since our analyses indicate that c is a
linear function of N, i.e.,

c= AN (18)

where A is the slope of the regression 1line determined by least
squares techniques, Eq. (17) can be expressed as

2 = [1 -A]/[AN + A]. (19)

From Eq. (19), several observations can be made. First, if the
slope of the regression line, A, is 1.0, then stz is 0. This is con- 4
sistent with our earlier observation that if ¢ = N, then the Gamma
distribution describes a pure speckle background with no scene varia-
bility. Second, for any N, as A decreases, stz increases. And final-
ly, for any ¢, as N 1increases, stz decreases (1.e., as the number of k
pixels averaged increases, the texture within the scene decreases). '
The A-parameter for all the test sites examined during this analysis
are summarized in Table 8.
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TABLE 8
SUMMARY OF A-PARAMETERS FOR STUDY TEST

TEST SITE DESCRIPTION X-BAND C-BAND L-BAND
Gl Grass Field 1.00 0.80 0.61
G2 3 Year 01d Pine 0.97 0.83 0.51
G3 30 Year 01d Pine 0.70 0.77 0.76
G4 50 Year Old Pine 0.79 0.72 0.79
G5 Mixed Oaks 0.82 0.67 0.72
G6 Sweetgum/Yellow Poplar 0.92 0.67 0.72
Sl Ocean Surface, 5 kt wind 0.83 0.69
S2 Ocean Surface, 15 kt wind 0.77 0.87
S3 Grass Field 0.83 0.61
S4 Potato Field 0.89 0.62
S5 Unharvested Corn Field 0.59 0.47
S6 Harvested Corn Field 0.55 0.92
S7 Mixed Deciduous Forest 0.59 0.64
M1 First Year Ice 0.70 0.86
M2 Second Year lc 0.84 0.73
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4
COMPARISON OF SCATTERING COEFFICIENTS
TO SURFACE ROUGHNESS PARAMETERS

Thus far in this report, we have concentrated on presenting means
to extract L-band clutter statistics from SAR imagery. These tech-
niques have included extraction of ¢© values from SAR data as well as
mathematically modelling the distributions of the ¢ values. Another
goal of this program was to collect information on the surface rough-
ness characteristics of the test sites being examined, and to corre-
late the roughness measurements to the ¢© values. These comparisons
will be presented in this chapter.

In Section 4.1, we present scattering models which utilize surface
roughness parameters to estimate radar scattering from different types
of flelds. In this analysis, we utilize the roughness measurements
collected during this program (summarized in Larson, et al. 1986). In
Section 4.2, we present a statistical comparison between the g0 from
the Duke Forest Test Sites and the forest parameters for the 22 test
sites. Finally, in Section 4.3, we discuss the implications of the
texture measures derived from the Gamma distribution with respect to
the scattering properties of the scene.

4.1 MODELLING OF RADAR CROSS SECTION (g9)

Three scattering models were evaluated for the describing ¢© val-
ues observed from several of the Long Island Test Sites. These models
were exercised using the surface roughness measurements collected
coincidently with the SAR overflights. Four fields were used in this
analysis: Site M (smooth, bare field); Site H (corn stubble); Site K
(grass field); and Site RF3 (grass field).

4.1.1 SCATTERING MODELS
The scattering models utilized in the present study were: (1) the
Barrick and Peake (1967) mode! for slightly rough surfaces; (2) the
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Barrick (1968) model for slightly rough surfaces based and Gaussian
surface height statistics; and (3) the Rayleigh scattering model
defined by Rice (1951).

The two scale models combine the backscatter from a slightly rough
surface with the scattering predicted by specular theory. The back-
scatter coefficient as derived by Barrick and Peake (BP) for a slight-
ly rough surface is given by

X ® 4 k°4 Cos4a‘||¢xx|2 w('2k051n 01) (20)
where
21
% =
04 = {ncident angle
W(8¢) = surface height spectrum
a(6y) = scattering coefficient

XX = transmitter/receiver polarizations

Both the surface height spectrum and scattering coefficient have
been derived from ground measurements and used to calculate a value
for . The second part of the two scale model uses the scattering
coefficient predicted from specular theory as developed by Barrick
(1968). The scattering coefficient, derived by Barrick and based on
Gaussian surface height statistics, 1s given by:

oyv = oph = [(sect 01)/52] exp [(tan? 83)/52]IR(0)12 (21)

where S2 = mean square of surface slope
R(o) = normal, 0 = 0, reflection coefficient

Values for the parameters in the BP slightly rough model are derived

from surface roughness measurements and dielectric constant
measurements.
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The Rayleigh scattering model as extended by Rice (Cosgriff, 1960)
is of value for the slightly rough surfaces considered in this inves-
tigation. The scattering coefficient g9 1s given in Equation 22 for
the Rice model.

o® = 8 cos'e, ﬁzko“j_:p(h) 3y(2k h sin 6,) r dr (22)

where h2 = mean square surface roughness, and
p(r) = surface height autocorrelation function

The Barrick and Peake and Rayleigh (Rice) scattering models were
exercised using the surface roughness and moisture parameters listed
in Table 9 and summarized in Figures 19 and 20. Both of these models
were exercised for VV and HH-polarizations. The results of the models
are presented in Figures 21 and 22. Also presented in the plots are
the SAR-observed ¢© values for the HH-polarized imagery. Finally,
Figure 23 presents a comparison of the HH-polarized data.

Overall, we can see that the Rayleigh (Rice) model predicts lower
09 values than the Peake and Barrick model. Both models predict the
observed decrease in L-band ¢© as a function of incidence angle. The
Peake and Barrick model results match the observed results quite well,
with the model overpredicting the SAR-observed values somewhat for
test sftes M and RF3. Contributions . to the scattered field from the
slightly rough component of the BP model dominated the true scale
model results. The only test site where the Rayleigh (Rice) model
comes close to matching the SAR-observed ¢° values is for test site H.
In all other cases, the model significantly underpredicted the
observed results.
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Figure 19. Surface Height Distribution Plots for Long
Island Test Sites [Figures (a) through (d)]

(a) Site M - Smooth, Bare Field
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Figure 19 (b). Site H - Corn Stubble
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Surface Profile Field K
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Figure 19 (c). Site K - Grass Field |
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Surface Profile Field RF3
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Figure 19 (d). Site RF3 - Grass Field M
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Correlation of Surface Profile Field K
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Figure 20 (c). Site K - Grass Field
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Correlation of Surface Profile Field RF3
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Site M - Smooth, Bare Field
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- Figure 21. Results of Peake and Barrick Model Predicted
versus SAR-Derived Values of ¢° [Figures (a)
through (d))
(a) Site M - Smooth, Bare Field
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Site H - Corn Stubble
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Figure 21 (b). Site H - Corn Stubble
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Site K - Grass Field
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Site RF3 - Grass Field
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Figure 21 (d). Site RF3 - Grass Field
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Figure 22 (b). Site H - Corn Stubble
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Figure 22 (c). Site K - Grass Field
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L—-band SAR Data

0 —&— Site M — Bare Field
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Figure 23. Comparison of Modeled versus SAR-Observed Values
of 0°. [(Figures (a) through (c)]
(a) SAR-Derived Values
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Peake and Barrick Model
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Figure 23 (b). Peake and Barrick Model
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4.2 STATISTICAL COMPARISONS

The next step in the analysis was to correlate the radar scatter-
ing coefficients 1isted in Table 5 with the forest canopy parameters
presented in Table 3. The test sites were divided into two groups
(hardwood stands and conifer stands) for these correlations. Simple

linear correlations (Draper and Smith, 1966). indicated a significant

relationship (at the 0.90 level of significance) between the L-band
scattering coefficients and coniferous tree height ( = - 0.65) and
hardwood stems per acre (R = 0.69). Multiple linear regression anal-
ysis (Draper and Smith, 1966) of the data showed a significant (at the
0.90 level) correlation between the C-band scattering coefficients and
deciduous DBH, basal area and tree height (R =0 .92) and the L-band
scattering coefficients and coniferous DBH and tree height (R = .90).

These statistical correlations should be beneficial in more deter-
ministic modeling efforts. A first order model to describe the forest
radar cross section, gf, can be expressed after Ulaby, et al. (1982)
as

af = Tc2lop + ot + Ty2(os + ost)] (23)

where T. 1is the transmissivity of the overstory canopy layer,
Ty 1s the transmissivity of the understory canopy layer,
op 1s the cross section of the branches in the overstory,
ot 1s the cross section of the tree trunks in the
overstory and understory,
os 1is the cross section of the soil layer, and
ost is the soil/trunk interaction scattering coefficient.

The correlations found in this study indicate that at C- and L-
band, a significant portion of the radar backscatter is explained by
parameters which describe the dimensions and numbers of tree trunks in

86

1, [{
|‘|‘QI.! \ " ...
‘.‘l“ﬁ:. ".‘ ‘,'l "l...l. W




. the forest stand. These results 1indicate that modeling efforts at C-
and L-band at vertical polarization should initially concentrate on
those parts of scattering model described in Eq. (23) which involve
the gt and ogt terms.

4.3 SCENE TEXTURE AS A FUNCTION OF SCENE COMPOSITION

Examining the scene texture as described by the A-parameter pre-
sented in Chapter 3 may lend insight into the processes resulting in
the radar backscatter from the different test sites. For this study,
six test sites from the Duke Forest test site were selected (see
Figure 13): B9 (grass field); B8 (3 year pine); B19 (30 year pine); y
B10 (50 year pine); B7 (mixed oak) and B5 (sweetgum/yellow poplar).

The nature of the scattering will affect the surface texture in )
two ways. First, for single-bounce, surface scattering, the spatial ~
distribution of the surface scatterers should be detected directly in

the observed texture pattern. For volume scattering, the spatial -
patterns of the scatters will not be as clear because of the multiple- f
bounces within a volume-scattering medium will act to reduce the var- X
fation of the pixel intensities within the scene. Forests will act as )

a complex scene with respect to texture because, depending on wave-
length, parts of the canopy will act as volume scatterers while other
parts will result in direct radar backscatter.

Figure 24 presents plots of the regression lines of the c- para- )
meter as a function of N for the six test sites. These plots compare .
the X-, C- and L-band data. Figure 24, from the grass field (see ¢

Figure 13g), contains the results which are most readily interpreted.
At X-band, the scattering is most 1ikely occurring from volume scat-
tering from the grass itself. Since grass is very homogeneously dis-
tributed throughout the scene in this case, with no bare ground being ’
visible, the scattering s almost exponential 1in nature
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(f.e., A =1.00). The opposite extreme from the volume scattering in
the X-band case is the L-band scattering, which is more than likely
almost entirely from the soil underneath the grass. This surface
scattering results in rougher texture in the L-band image. At C-band,
we would expect a combination of volume and surface scattering, re-
sulting in a texture somewhere between those observed at X- and L-
band. This is indeed the case.

The next most complex scattering case is represented by the 3 year
pine stand (see Figure 13a). At L-band, the branches of the small
pine trees are probably not large enough to influence the scattering
of the vertically-polarized waves, but the trunks of these trees are
probably large enough to result in additional scattering from the
scene., This additional scattering is indicated by the higher L-band
00 value for the 3 year pine stand relative to the grass field, and
also results in more texture in the scene, as the decrease in the A
term in Table 8 and Figure 24 indicates. At X- and C-bands, there is
almost no change in image texture compared to the grass fields, indi-
cating that the vertically-polarized electromagnetic energy at these
radar frequencies is not being greatly influenced by the presence of
the small pine trees in this field.

While simple, first-order scattering models can be used to explain
the differences in observed texture for the grass and three year pine
test sites, more complex models are needed for the test sites which
contain a fully-developed forest canopy. The only mature forest ‘es:
site where any significant variation in scene texture exists ‘< * -
the sweetgum/yellow poplar stand. Two questions arise when exam -
the textures for the mature forest stands. First, why are *he-o
variations in texture as a function of radar freqguency ‘or °%e
pine, 50 year pine and mixed oak stands? and secsns . a™.
image texture at X- and L-bands for the sweetgum .¢ w
vary from the other stands? The answers (¢ *hewe ‘w o -

to a great degree on the sources of the . e
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radar frequencies. Radar scattering models from forest canopies have
not been developed to the point where these questions can be ad-
dressed. One possible explanation lies in the density of the trees
within the four mature forest stands. From Table 5, we can see that
the sweetgum/yellow poplar stand had a lower tree density (470 stems/
ha) than any of the other three sites (620 to 963 stems/ha). The
lower tree density may result in a discontinuous canopy profile for
this stand (versus a continuous canopy profile for the others), caus-
ing a different spatial pattern in the scene scatterers, which is
detected as a texture difference in the SAR imagery.
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5
CONCLUSIONS AND RECOMMENDATIONS

A goal of research sponsored by the Electronic System Division
(ESD) of the U.S. Afr Force 1{s to develop theoretical models to pre-
dict terrain scattering properties at L-band. In order to achieve
this goal there has been a need to:

1. Collect a data base of radar cross-section signatures (both
the mean and the histogram) for various terrain types,

2. Collect a coincident (with [1] above) set of surface scatter-
ing characteristics (i.e., surface roughness and dielectric
property measurements) for the various terrain types, and

3. Develop a model (efther deterministic or statistical) which
predicts the radar cross-sectional signature as a function of
the surface scattering characteristics.

Research has been conducted at ERIM for the ESD over the past two
years addressing the area of further development of L-band terrain
scattering models (Larson, et al., 1986; Kasischke, et al., 1987).
Under this program, a set of airborne, L-band SAR data collected over
several test areas has been analyzed. L-band cross-section signatures
of various terrain types have been extracted from the SAR data using
ERIM's digital SAR image calibration algorithm (see Larson, et al.,
1986). These signatures include both an average radar cross-section
value (0°) as well as a radar cross-section histogram for each terrain

type.

A selected set of terrain scattering measurements were made for a
limited set of test sites during each SAR overflight. From each site
the following information or data were obtained: (1) sofl samples
were obtained, from which dielectric property, soil moisture and sofl
density measures were obtained; (2) surface photographs were taken to

. document the general state of the vegetation; (3) the height and den-
sity of the vegetation were noted, and measured when ever possible;
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and (4) surface height profiles were obtained, from which additional
surface roughness properties were derived, including: (a) spectrum of
the surface height, (b) slope distribution, (c) radius of curvature,
and (d) autocorrelation of the surface heights (see Larson, et al.,
1985).

Results obtained and reported under the present research effort is
the correlation of the cross-section signatures with the surface para-
meter measures via radar scattering models. These models are either
deterministic or statistical in nature.

The deterministic models are used to correlate the average radar
cross-section with the surface scattering properties. The second
modeling effort has utilized methods for describing the statistical
distribution of the radar cross-section values for each terrain type.
For this purpose, a gamma, {inverse Gaussian, and log normal distribu-
tions, have all been found to adequately describe the L-band cross-
section distribution. The cumulative distribution generated is com-
pared to the actual radar cross-section distribution via non-para-
metric statistical tests.

Results obtained have shown that terrain scattering coefficients
can be derived from calibrated L-band SAR. In addition, the large
areal coverage capability of the SAR is used to obtain data from which
scattering coefficients from a large number of sites and terrain types
are derived. Although only a small fraction of the calibrated L-band
SAR data available were utilized in this research due to funding limi-
tations, scattering coefficients have been obtained from a wide vari-
ety of terrain types and forests areas. Data may be obtained for a
wide range of incident angles, being limited only be the number of SAR
data collection passes made.

Research reported in this report has focused on the reduction and
analysis of L-band data from several programs conducted for other U.S.
Government sponsors. Although much progress was made, there are still
fundamental limitations in this data set. These 1imitations are
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within two areas: (1) the number of test sites and their location
limited the variation in surface scattering parameters which are
needed to fully develop L-band terrain scattering models; and

(2) techniques have to be further developed to measure the surface
scattering properties of terrains, especially tree canopies. The
following are specific recommendations for future work to continue and
address the above stated goal of ESD:

1. Collect L-band radar cross-section coefficients over a wide
variety of surface-terrains under a variety of conditions
using a surface-based scatterometer,

2. Utilize available L-band SAR data and where necessary collect
additional L-band radar cross-section data over a limited
number of terrain types using ERIM's ca]ibrated L-band syn-
thetic aperture radar,

3. Evaluate new techniques to measure the surface characteristics
of various terrain types, including the use of a laser profil-
ing system and photographic techniques, and

4. Correlate the surface scattering measurements to the L-band
radar scattering data via deterministic and/or statist1cal
scattering models.

It is anticipated that arrangements may be made in the future to
collect L-band SAR data using the ERIM SAR which is being deployed on
a U.S Navy P-3. With sponsor approval, the data from this system may
also be processed to generate L-band terrain radar cross-section val-
ues. It is recommended that surface-based L-band scatterometers be
used to collect data at sites within each test area coincident with
SAR data collection. The SAR and scatterometer data collections shou-
1d be coordinated so that each instrument is collecting data on the
same day. The scatterometer can be configured to collect data at a
range of incidence angles.
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It is further recommended that at each test site visited during
the SAR and scatterometer data collection period, surface scattering
data be collected, including soil samples, surface profiles and sur-
face photographs. One site should be established as an intensive test
site. Within this site, extensive scatterometer and surface scatter-
ing measurements should be obtained, including surface roughness pro-
files utilizing a laser-profiling device such as what has been devel-
oped at ERIM.

Verification of methods for the characterization of surface rough-
ness. The use of recently developed laser profilers that allow large
areas to be profiled with accuracies of better than 1 cm should be
utilized in future research. Surface contours obtained using this
system can be correlated with samples of surface roughness obtained
using conventional techniques (Larson, 1986) to determine when surface
roughness profile has been adequately sampled for use in scattering
models. Since the measured surface profile is used to derive other
surface descriptors for use in scattering models, the answer to this
speculation s critical to the development of reliable models.

It is recommended that the North Carolina test are be used to
further develop techniques to quantify the structural characteristics
of the forest canopy, and to relate these characteristics to the radar
scattering signatures. This is recommended because of the extensive
ground truth data available describing the entire forest test site.
The surface profiling techniques developed for low-lying vegetation
canopies cannot be applied to forest canopies, and different ap-
proaches must be developed. We recommend photogrammetric techniques
to measure the canopy closure and the horizontal and vertical surface
area of the different forest stands within the experimental forest
west of Durham, North Carolina (i.e., the Duke Forest). These mea-
surements, along with the other canopy characteristics which are on
record for this forest (i.e., canopy height, stand or stem density,
age, species diversity, and basal area or average stem diameter) may
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be correlated with the L-band radar cross-section data collected over
this area. A data set already exists where SAR data were collected
when there were no leaves on the trees. It is recommended that an-
other data set be collected when leaves are on the trees along with
coincident, photographics data when the SAR data collected.

Analysis of this new data would provide the radar cross-section
data to be correlated to the surface scattering data using statistical
or deterministic scattering models, much in the same manner as was
used in the present program. These results may then be used to add to
the available data base for an L-band scattering model. And to pro-
vide additional empirical data correlation for verificatfon of the
L-band scattering model.
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